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phase boundaries. 6.6. Test 6: impact on a semi-infinite bar. 6.7.
Test 7: propagation of a phase boundary in a finite bar. 6.8.

This paper considers numerical methods for computing propagat-
Test 8: an example for a more general two-phase material.

ing phase boundaries in solids described by the physical model
7. Concluding remarks.

introduced by Abeyaratne and Knowles. The model under consider-
Appendix.

ation consists of a set of conservation laws supplemented with a
kinetic relation and a nucleation criterion. Discontinuities between

1. INTRODUCTIONtwo different phases are undercompressive crossing waves in the
general terminology of nonstrictly hyperbolic systems of conserva-

After Ericksen’s seminal paper [19], continuum model-tion laws. This paper studies numerical methods designed for the
ing of solid–solid phase transformations by finite elasticitycomputation of such crossing waves. We propose a Godunov-type

method combining front tracking with a capturing method; we also theory has been a very active research area in the commu-
consider Glimm’s random choice scheme. Both methods share the nity of continuum mechanics. Now it is known that a non-
property that the phase boundaries are sharply computed in the linear elastic material capable of phase transformation can
sense that there are no numerical interior points for the description

be modeled by a nonconvex free energy function (cf., forof a phase boundary. This property is well known for the Glimm’s
a background on the subject, Abeyaratne [1] and Rosakisscheme; on the other hand, our front tracking algorithm is designed

so that it tracks phase boundaries but captures shock waves. Phase [54]). The loss of convexity, or more generally of rank-one
boundaries are sensitive to numerical dissipation effects, so the convexity of a free energy function (which would imply
above property is essential to ensure convergence toward the cor- nonstrong ellipticity for the set of P.D.E’s) leads to non-
rect entropy weak solution. Convergence of the Godnuov-type uniqueness of solutions to the corresponding boundarymethod is demonstrated numerically. Extensive numerical experi-

value problem or initial-boundary value problem, even ifments show the practical interest of both approaches for computa-
entropy admissibility conditions are imposed; cf. Jamestions of undercompressive crossing waves. Q 1996 Academic Press, Inc.

[34]. In the setting of continuum mechanics, the non-
uniqueness of solutions can be viewed as a lack of constitu-
tive information about the phase transformation process.CONTENTS
In order to recover a unique solution to a boundary value

1. Introduction. problem or initial-boundary value problem, various consti-
2. Modeling of propagating phase boundaries. 2.1. The Abey- tutive postulates have been proposed; typically one re-

aratne–Knowles model. 2.2. Riemann and Goursat–Riemann quires that the solution minimize the total energy in a
problems.

suitable sense (Dafermos [18], Ericksen [19], Ball and3. A front tracking/capturing scheme. 3.1. The general approach.
James [7]), or be obtained as the limit of a viscosity regular-3.2. Propagation, nuclation, and interaction. 3.3. Consistency

and entropy condition. ization of the set of P.D.E.’s (Slemrod [61], Fan-Slemrod
4. Random choice scheme. [20], Rybka [55], Swart and Holmes [62]).
5. Extension to more general two-phase materials. Another approach was recently proposed by Abeyaratne
6. Numerical experiments. 6.1. Test 1: single phase boundary. 6.2. and Knowles [2–5], who introduced postulates of constitu-Test 2: single phase boundary with complex initial data. 6.3. Test

tive nature at phase boundaries. The Abeyaratne–Knowles3: nucleation of two phase boundaries. 6.4. Test 4: nucleation of
approach deals primarily with the quasi-statics and dynam-a phase boundary at an end point. 6.5. Test 5: collision of two
ics of phase transformation. Moreover, this model is able
to describe the solutions obtained by the viscosity regular-
ization theory in certain sense (Abeyaratne and Knowles

1 E-mail: zhong@cco.caltech.edu; address after August 15, 1995: De- [5] and, for a mathematical setting, LeFloch [41]). The
partment of Engineering Science and Mechanics, Virginia Polytechnic

objective of this paper is to present two numerical methodsInstitute and State University, Blacksburg, VA 24061.
suitable to compute the solutions to initial-boundary-value2 E-mail: hou@ama.caltech.edu.
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The materials we deal with are characterized by noncon- mentation of such a method is more difficult if complex
flow features such as shock wave interactions must be takenvex strain energy functions. These materials describe both

stable deformations and metastable deformations. Phases into account.
are associated with disjoint deformation domains of a sin- (ii) The shock capturing schemes, which represent a
gle strain energy function. In each disjoint deformation more standard methodology. In particular the first-order
domains, a deformation is either stable, metastable, or accurate Godunov method [26] and its higher order exten-
unstable. Based on the fact that an unstable deformation sions have received a lot of attention in recent years. This
is not observable in solid–solid phase transformations, it research culminated with works by van Leer [40] (MUSCL
is assumed that a deformation will jump from one stable scheme), Colella and Woodward [16] (PPM scheme),
or metastable phase to another when a certain critical value Harten, Osher et al. [28, 30, 52] (ENO schemes), and others.
is reached. Such an occurrence leads to the formation of The implementation of shock capturing methods is gener-
a phase boundary, or nucleation. The emergence of a new ally straightforward. Shock fronts are not sharply com-
phase boundary is a consequence of the local instability puted, but they usually spread out over a few mesh cells
of a deformation. The basic assumptions in the Abey- only; this is satisfactory for most applications. Several
aratne–Knowles model are as follows: methods that further sharpen numerical shock fronts have

been developed; see Harten and Hyman [27] for a self-(i) The deformation is smooth enough, say of class C 2,
adjusting grid method and Harten [29] for the techniqueaway from shock fronts or phase boundaries. Deformation
of subcell resolution applied to ENO schemes. To combinegradients are discontinuous across shock fronts or phase
the advantages of tracking and capturing methods, it mayboundaries, but the deformation itself should be con-
be advantageous to hybridize the two techniques: trackingtinuous.
strong shock waves but capturing those with weak strength

(ii) Two supplementary constitutive relations are pos- [11, 12, 58].
tulated: a kinetic relation valid at any subsonic phase
boundaries and a nucleation criterion. Various numerical methods have been applied to com-

puting the dynamics of solid–solid phase transformations.Thus phase boundaries are not free boundaries, but
Kloucek and Luskin [37] and Swart and Holmes [62] usedrather are driven by the kinetics. Unlike classical shock
finite difference or finite element methods, combined withwaves, phase boundaries should not be viewed as a conse-
various type of either physically motivated or artificial vis-quence of overlapping characteristics. In other words phase
cosity regularizations. The phase boundary in this ap-boundaries do not arise dynamically, but instead are cre-
proach is spread over a narrow region. Slemrod [61] per-ated spontaneously when certain conditions are fulfilled.
formed numerical experiments with the Lax–FriedrichsSince the P.D.E.’s describing the dynamics of phase
scheme. Various finite difference techniques have beentransformations are nonlinear, the initial-boundary value
considered by Affouf and Caflisch [6], Cockburn and Gauproblems cannot be solved analytically in general, and
[14], and Jin [35]. Silling used a dynamical relaxation tech-developing computational methods is therefore an im-
nique to model quasi-static phase transformation processesportant task.
and the dynamic growth of martensitic plates [59, 60]. WeNumerical methods developed in the last 10 years for
also refer to the works by Collins and Luskin [17] andclassical shock waves in CFD cannot be applied directly to
Nicolaides and Walkington [50].phase boundary propagation problems. A phase boundary

The present paper deals with the model recently intro-indeed has distinct properties as we will explain it below.
duced by Abeyaratne and Knowles. The system of P.D.E.’sHowever, we are able to build upon numerical techniques
in the model takes the form of a hyperbolic-elliptic systemdeveloped in CFD and develop an efficient and robust
of 2 3 2 conservation laws in the one-dimensional setting.numerical method capable of computing dynamical phase
The class of materials considered here admits a nonmono-transition problems.
tone stress–strain relation; this leads to an elliptic regionThere are two types of classical methods for shock wave
separating two hyperbolic regions. Based on the physicalcomputations. They can be classified as shock tracking and
origin of the system, it is natural to restrict attention toshock capturing schemes.
the hyperbolic regions. Abeyaratne and Knowles [5] have
shown that the Riemann problem for this system is well(i) The front tracking schemes. For the recent activity

on the subject, we can refer to Glimm et al. [24, 25], Hyman posed, provided the initial data take values in the hyper-
bolic regions only, and the conservation laws are supple-[32], Moretti [49], and Oran and Boris [51]. See also the

works by Chern and Colella [12] and LeVeque and Shyue mented with an entropy inequality, a kinetic relation, and
an initiation criterion.[42]. A main advantage of the front tracking methods lies in

the fact that the shock front is sharply computed basically For material on nonstrictly hyperbolic equations, we
refer to the paper by Isaacson, Marchesin, and Plohr [33]without any numerical dissipation. However, the imple-
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and the references therein. The phase boundaries are inter- them to various practical situations: notably, the propaga-
tion of a phase boundary in a Riemann problem and thepreted as undercompressive crossing waves; an analysis of

the characteristics associated with the system shows that propagation of a phase boundary in a finite domain (which
is an initial-boundary value problem). We also computesuch waves are not uniquely determined by their initial

data even if the Lax entropy inequality (or Clausius– the nucleation of a new phase and the collision of two
phase boundaries. The numerical results are in excellentDuhem principle) is imposed. Cf. Dafermos [18] for a re-

view on the entropy criterion. Stability of undercompres- agreement with the analytical solutions when available.
By developing a Godunov-type front tracking/capturingsive waves is an active area of research; cf. Liu and

Zumbrum [44]. Cf. also Shearer [56], Keyfitz [36], and method, we make it possible to solve arbitrary initial-
boundary value problems; in particular, our method canTruskinovsky [63] for additional materials on the system.

Two main questions we have to address for designing a be used to compare the predictions of the model to experi-
mental observations in complex physical situations. On thescheme adapted to propagating phase boundaries are the

following ones: other hand, the numerical method can also be applied to
check the physical model itself, e.g., to decide whether(i) How to incorporate in the scheme the kinetic rela-
time-dependent solutions approach stationary solutions intion which drives the motion of a phase boundary?
the long run. Furthermore, the techniques and ideas in

(ii) How to avoid the unstable deformation domain of this paper could be applied to other systems admitting
the strain energy function? undercompressive crossing waves. It should be noted that

Mamiya and Simo [45] recently developed a finite elementTo overcome these difficulties, we propose a front
tracking/capturing method. In this method, conventional method for the Abeyaratne–Knowles model. But they only

considered the quasi-static case (i.e., inertial term ne-shock waves will be captured, but phase boundaries will
be tracked by solving locally the Riemann solution which glected) for a special kinetic relation.

The outline of this paper is as follows. In Section 2, weincludes the effect of the kinetic relation and the nucleation
criterion. By tracking the phase boundaries explicitly, we introduce the model proposed by Abeyaratne and

Knowles, and we list some solutions to the Riemann prob-avoid computing cell averages over quantities in different
phases. As a consequence, cell average values falling in an lems. Section 3 presents our front tracking/capturing

method that accommodates the kinetic relation and theunstable phase are excluded. This is very important for
the stability of our numerical method. nucleation criterion. Section 4 discusses Glimm’s scheme.

In Section 5, we extend our front tracking/capturingIn this paper, we first focus on a special elastic material
capable of phase transition, the so-called trilinear material. method to include more general two-phase elastic materi-

als by proposing an approximate Riemann solver. Section 6The Riemann solution for this trilinear material can be
obtained analytically, and the properties of the solutions presents several numerical experiments. We make several

remarks about this work in conclusion.are relatively well understood. We also extend our numeri-
cal method to include more general two-phase elastic mate-

2. MODELING OF PROPAGATING PHASErials. For general two-phase elastic materials, the Riemann
BOUNDARIESproblem in general cannot be solved analytically. An ap-

proximate Riemann solver must be constructed. Standard
2.1. The Abeyaratne–Knowles Modelmethod, such as Roe’s approximate Riemann solver cannot

be used directly here, due to the nonconvexity of the strain Consider a one-dimensional bar with uniform cross sec-
energy function. Here we propose a possible extension of tion A and uniform mass density r that occupies the inter-
Roe’s solver to the phase transformation problem. This val [0, L] in an unstressed reference configuration. In a
approximate Riemann solver shares many properties of longitudinal motion of the bar, the particle at x is carried
Roe’s solver for conventional conservation laws. Prelimi- to the point x 1 u(x, t) at time t, where the displacement
nary numerical experiments seem to give favorable results. u is assumed to be Lipschitz continuous and have piecewise

Another method which is capable of computing propa- first and second derivatives on [0, L] for each t . 0. We
gation of phase boundaries is the random-choice scheme denote by
introduced by Glimm in [22]. The convergence of this
method for phase/capturing method and the Glimm c 5 ux , v 5 ut , (2.1)
scheme share the property that the phase boundaries are
sharply computed in the sense that there are no numerical the strain and particle velocity, respectively. It is assumed

that c(x, t) . 21 so that the mapping x R x 1 u(x, t) isinterior points for describing a phase boundary. This prop-
erty is essential to ensure the convengence to the correct invertible at each time t. The following stress–strain func-

tion is a given constitutive relation depending on the mate-entropy weak solution. To demonstrate the relevance of
both methods considered in the present paper, we apply rial under consideration:



PROPAGATING PHASE BOUNDARIES 195

s 5 s(c). (2.2) The admissibility entropy condition satisfied by any propa-
gating wave, and especially the phase boundary, is

Neglecting body forces for simplicity, the equations of mo-
tion and the compatibility read as follows: f (t)ṡ(t) $ 0. (2.12)

Under isothermal conditions, the admissibility conditions9(c)cx 2 rvt 5 0, (2.3)
is a consequence of the second law of thermodynamics.vx 2 ct 5 0. (2.4)
For reference, see, for example, [38].

A Material Capable of Phase Transition. The JacobianEquations (2.3)–(2.4) take the form of 2 3 2 system of
matrix of system (2.5) has the formconservation laws:

Ut 1 f (U)x 50, U5Sv

c
D , f (U)5S2s(c)/r

2v
D . (2.5)

=f (U) 51 0 2
s9(c)

r

21 0
2

We shall be concerned with traveling discontinuities for
system (2.5). If there is a strain discontinuity at x 5 s(t), and therefore admits two (real or complex eigenvalues:
the following jump conditions must hold: 6(s9(c)/r)1/2. In this paper, the stress-strain function is

assumed to have the following properties:
ṡ(c1 2 c2) 5 2(v1 2 v2), (2.6)

s(c) is monotone increasing for c [ (21, cm) < (cM , y),s(c1) 2 s(c2) 5 2r ṡ(v1 2 v2), (2.7)
(2.13)

where the index 6 denotes limiting values in front of and s(c) is monotone decreasing for c [ (cm , cM), (2.14)
behind the discontinuity, respectively. Let

where cM and cm are fixed constants satisfying 21 , cm ,
W (c) 5 Ec

0
s(c9) dc9 (2.8) cM . It follows that system (2.5) admits two real eigenvalues

6(s9(c)/r)1/2 if either c [ (2y, cm) ; H1 or c [ (cM ,
1y) ; H3 . In the range of values (cm , cM), the eigenvalues

be the strain energy per unit volume. For definiteness, are not real, and the system (2.5) is elliptic. The latter
let us consider the restriction of the motion to the time region corresponds to unstable deformation and is ex-
interval [t1 , t2 ] and the piece of the bar that occupies the cluded. In the whole of this paper, only values of c in
interval [x1 , x2] in the reference configuration. Suppose H1 < H3 will be dealt with.
that c and v are smooth functions for x [ [x1 , x2] and t [ The simplest materials capable of phase transformations
[t1 , t2] everywhere except along a curve of discontinuity are the so-called trilinear materials. This choice has been
x 5 s(t). proposed in [5] in order to carry out analytical calculations.

Let E(t) be the total mechanical energy at time t for the We focus primarily on the trilinear materials in this paper.
piece of the bar under consideration: The trilinear stress-strain relation is

E(t) 5 Ex2

x1

[W (c(x, t) 1 As rv2(x, t)]A dx. (2.9)

s(c)55
ec, 21,c,cm ,

sm 2sM

cm 2cM
(c2cM)1sM , cm ,c,cM ,

e(c2cT), cM ,c,

(2.15)A direct calculation based on Eqs. (2.5) establishes the
following work-energy identity:

s(x2)v(x2 , t)A2s(x1)v(x1 t)A2 Ė(t)5 f (t)ṡ(t)A, (2.10)
where sm 5 ecm , sM 5 e(cM 2 cT). We call 21 , c ,
cm phase 1, cm , c , cM phase 2, and the rest phase 3.where the driving traction f (t) is defined by
Phase 1 and 3 are metastable phases; phase 2 is an unstable
phase. Typically phase 1 identifies itself with the phase of

f (t) 5 f̂ (c2 , c1) 5 Ec1

c2

s(c) dc
(2.11)

austenite, and phase 3 with the phase of martensite. Waves
in each phase propagate with speed c 5 (e/r)1/2. The driv-
ing traction on a 3–1 phase boundary is derived from (2.11):2 As [s(c1) 1 s(c2)](c1 2 c2).
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f (c2 , c1) 5
ecT

2
(c1 1 c2 2 cM 2 cm). (2.16)

One can check that the system (2.5) has self-similar solu-
tions which are not uniquely determined by the jump condi-
tions, the entropy admissibility condition (2.12), and the
initial condition. In fact subsonic phase boundaries are

FIG. 1. Form of solution to Riemann problem with 1–3 initial data.
undercompressive crossing shocks in the general terminol-
ogy of systems of conservation laws. For such waves, it is
expected that the classical admissibility conditions are not

by the thermal activation theory [64]. The special choiceenough to determine the solutions. Supplementary condi-
of the function fpq(ṡ) 5 0 would be obtained from a modeltions derived from the physics are necessary.
with dissipation-free phase boundaries. One could also

Two Supplementary Constitutive Relations. Besides the postulate that fpq(ṡ) 5 gṡ, where g is a sufficiently small
equations of motion, stress–strain relation, jump condi- positive constant. This postulated kinetic response function
tions, and admissibility condition, we must specify two can be viewed as a linearization of the kinetic response
supplementary constitutive relations in order to uniquely function derived by thermal activation theory.
determine a solution of the system. The two supplementary The form of nucleation criterion is motivated, in part,
constitutive relations are the kinetic relation and the nucle- by models used to describe nucleation in materials science;
ation criterion. The kinetic relation relates the phase see, e.g., Christian [13], Fine [21]. Roughly speaking, when
boundary propagation speed ṡ to the driving traction f (t) a new phase is to be nucleated from its parent phase, the
acting on the phase boundary. The nucleation criterion transformed material of the parent phase has to overcome
determines when a new phase will nucleate from the parent certain ‘‘energy barrier.’’ The ‘‘energy barrier’’ can be
phase. These two relations are material-dependent. In the overcome when the local driving force is large enough.
present paper, we shall use the following kinetic relation

2.2. Riemann and Goursat–Riemann Problemsand nucleation criterion:

This section provides us with some explicit solutions to1. Kinetic relation:
the Abeyaratne–Knowles model that will be useful to test
the numerical methods presented in this paper. For addi-f 5 fpq(ṡ) (2.17)
tional details, we refer to Abeyaratne and Knowles [4] and
Zhong [65]. We refer to LeFloch [41] for the continuousfor a phase boundary propagating from phase p to
dependence of the solutions.phase q, where fpq(ṡ) is a monotonically increasing func-

Consider the initial data:tion that may be discontinuous at ṡ 5 0 and satisfies
fpq(ṡ)ṡ $ 0.

2. Nucleation criterion. Generally speaking the nucle-
v(x, 0), c(x, 0) 5HvL , cL , 2y , x , 0,

vR , cR , 0 , x , y,
(2.20)ation criterion should be expressed in terms of the driving

traction. However, for trilinear materials the nucleation
criterion can be formulated in terms of strain which is more for our set of Eqs. (2.5)–(2.7), supplemented with the trilin-
convenient to use, say ear material in Section 2.1.

The solutions to the Riemann problem are listed for two
c $ ccr (2.18) cases of interest.

Case I. A 1–3 initial data; i.e., cL is in phase 1 andfor phase 1 to phase 3 transformation and
cR is in phase 3. The Riemann solution then contains a
single phase boundary; cf. Fig. 1. The solution has thec # c*cr (2.19)
form

for phase 3 to phase 1 transformation, where c*cr and ccr

are given constants, called critical transformation
v(x, t), c(x, t) 55

vL , cL , 2y , x , 2ct,

v2 , c2 , 2ct , x , ṡt,

v1 , c1 , ṡ , x , ct,

vR , cR , ct , x , y,

(2.21)strains.
Observe that only the entropy condition (2.12) imposes

some restriction on the kinetic response function fpq(ṡ).
These kinetic response functions may be supplied by ap-
propriate constitutive modeling; an example is provided here the intermediate states are given by
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where

c1 5 h 2
cṡcT

c2 2 ṡ2 ,

c2 5 h 1
ccT

c 1 ṡ
,FIG. 2. Form of solutions to Riemann problem with 1–1 initial data:

(a) no new phase boundaries; (b) two phase boundaries.

c3 5 h 2
cṡcT

c2 2 ṡ2 ,

c2 5 h 2
ccT

2(c 1 ṡ)
, v1 5 vL 2 ccL 1 ch 2

c2ṡcT

c2 2 ṡ2 ,

v2 5 vL 1 c(c2 2 cL), v2 5 vL 2 ccL 1 ch,

c1 5 h 1
ccT

2(c 2 ṡ)
, v3 5 vR 1 ccR 2 ch 1

c2ṡcT

c2 2 ṡ2 ,

v1 5 vR 2 c(c1 2 cR),
h 5

1
2c

(vR 2 vL 1 c(cR 1 cL)).

h 5
1
2c

(vR 2 vL 1 c(cR 1 cL)).

Here ṡ is determined by the kinetic relation at a phase
boundary, f 5 f13(ṡ).Here ṡ is determined by the kinetic relation at the phase

We now turn to the Goursat–Riemann problem charac-boundary, f 5 f13(ṡ), i.e.,
terized with the initial conditions

ecT

2
(cm 1 cM 2 c2 2 c1) 5 f13(ṡ). (2.22) v(x, 0) 5 v0 , 0 , x , y,

c(x, 0) 5 c0 , 0 , x , y,
Case II. A 1–1 initial data; i.e., cL and cR are in phase

1. We distinguish here two cases. If (1/2c)(vR 2 vL 1
and a boundary condition for the velocity,c(cR 1 cL)) # ccr , then the solution is

v(0, t) 5 vb , 0 , t , y,

v(x, t), c(x, t) 55
vL , cL , 2y , x , 2ct,

v0 , c0 , 2ct , x , ct,

vR , cR , ct , x , y,

(2.23) where c0 , v0 , vb are given constants; see Fig. 3.
Observe that it would be equivalent to impose a bound-

ary condition on the displacement. We can also impose
the traction: s(0, t) 5 s0 , which is equivalent to imposingwhere
the strain.

c0 5
1
2c

(vR 2 vL 1 c(cR 1 cL)), Case I. The material is initially in phase 1, i.e., c0 ,
ccr . If vb . v0 1 c(c0 2 ccr), then the solutions are (Fig. 3a):

v0 5 vL 1 c(c0 2 cL)

(see Fig. 2a).
If (1/2c)(vR 2 vL 1 c(cR 1 cL)) . ccr , then there is a

new phase initiated at the origin; see Fig. 1b. The solution is

vL , cL , 2y , x , 2ct,

v1 , c2 , 2ct , x , ṡt,

v(x, t), c(x, t) 5 v2 , c2 , 2ṡt , x , ṡt, (2.24)

v3 , c3 , ṡt , x , ct,
FIG. 3. Form of solutions to a Goursat–Riemann problem: (a) non-

new phase boundary; (b) one phase boundary.

5
vR , cR , ct , x , y,
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U n
j 5

1
hn

j
Exn

j11/2

xn
j21/2

U(tn , x) dx. (3.1)
v(x, t), c(x, t) 55vb ,

v0 2 vb

c
1 c0 , 0 , x , ct,

v0 , c0 , ct , x , y.

(2.25)

Given the approximate solution hU n
j j at time tn , the Godu-

nov scheme consists of two main steps:
If vb , v0 1 c(c0 2 ccr), then the solution is (Fig. 3b)

(i) Solve a Riemann problem at each cell interface
xn

j21/2 with the initial data (U n
j21 , U n

j ) ( j 5 ..., 21, 0, 1, ...).
The solution at the time t 5 tn11 is known on the whole
space interval and locally in time, that is, at least in thev(x, t), c(x, t) 55

vb , cb , 0 , x , ṡt,

vp , cp , ṡt , x , ct,

v0 , c0 , ct , x , y.

(2.26)
interval [tn , tn11].

(ii) Compute the cell averages at time tn11 in each com-
putational cell and obtain hU n11

j j.where

Step (i) can be performed for a phase boundary problem
in the same way that it is done for a problem admitting

cb 5
v0 1 cc0

c
2

vb

c
1

ccT

c 1 ṡ
, conventional shock waves only. The Riemann solution,

including the effect of the kinetic relation and the nucle-
ation criterion, is known explicitly. Step (ii), however,vp 5 vb 1

c2ṡcT

c2 2 ṡ2 ,
should not be carried out when a cell contains the two
possible phases.

cp 5
v0 1 cc0

c
2

vb

c
2

cṡcT

c2 2 ṡ2 . In designing our Godunov scheme for propagating phase
boundaries, it is important to avoid computing an average
over quantities in different phases. As a matter of fact, if

Again ṡ is determined by the kinetic relation. we do compute averages over quantities in different
Case II. The material is initially in phase 3, i.e., c0 . phases, we may get a value for the strain falling in an

c*cr. The formula for the solution for this case is very similar unstable phase—unstable phases do not arise in the physi-
to the one of Case I, so we omit it. cal model if initial data are metastable. Such values may

lead to instability in the computation. To avoid computing
the average over a phase mixture, we must know the posi-3. A FRONT TRACKING/CAPTURING METHOD
tion of a phase boundary exactly so that we can somehow

3.1. The General Approach compute the average entirely in one phase. When we are
away from the phase boundaries, we want to take theOur objective is to present a numerical method for the
advantage of shock capturing schemes. So our strategy iscomputation of dynamical phase transition problems. As
to develop a front tracking/capturing method that tracksthe solutions of the Riemann problem are known explicitly,
phase boundaries and captures conventional shock waves.it is natural to develop a Godunov-type method. The stan-

The method reads as follows: the space is discretized indard Godunov method in principle could be applied; how-
such a way that a phase boundary is at a grid point (a cellever, it does not produce the correct solution. We observe
interface). If at some time tn a phase boundary is locatedthat a phase boundary is rather different from a conven-
at one grid point, the computation will proceed as follows:tional shock wave and numerical methods for shock waves

cannot be applied directly. Our objective is to design a (i) Compute all quantities at the time tn11 from the
method that does not introduce numerical values in the approximation at the time tn , including the phase boundary
unstable region of system (2.5), that is, in the interval (cm , propagation speed determined by the kinetic relation and
cM). This will be achieved by using a Lagrangian algorithm the location of the phase boundary at tn11 .
in which the interface is tracked. Below we briefly review (ii) Shift the grid mesh according to the movement of
Godunov’s method and explain how it has to be modified the phase boundary so that the phase boundary is still a
to meet present needs. We use the following notation. As grid point.
variable meshes will be used, we denote by xn

j11/2 the spatial
grid points at time tn . Subsequently [xn

j21/2 , xn
j11/2] repre- This approach is typical of the so-called Lagrangian algo-

rithms. To implement the idea, a moving mesh has to besents a computational cell, xn
j is the center of the cell, and

hn
j 5 xn

j21/2 2 xn
j11/2 is the cell width at time tn . We denote used. The method will be presented in three steps: first an

algorithm for an initial value problem with a single phaseby kn the nth time step, and we set: tn 5 on21
m51 km , t0 5 0.

If U(t, x) is given, the cell average of U in the cell j and boundary will be described. In a second stage it will be
extended to the initial-boundary value problem. Then theat time tn is defined as
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f̃ n(U) 5 f (U) 2 V nU,

then (3.3) takes the form:

U n11
j 5 U n

j 2
kn

hn
j

( f̃ n(U*(U n
j11 , U n

j ))
(3.4)

2 f̃ n(U*(U n
j , U n

j21)).
FIG. 4. A mesh in (x, t) plane.

One has to be careful when a phase boundary is being
dealt with. Suppose xj011/2 is a phase boundary. Then the
Riemann solution at xj011/2 in the cell j0 isalgorithm will be further modified to include the nucleation

of new phase boundaries at the boundary of, or inside, the
U*(U n

j011 , U n
j0

) 5 U 2(U n
j011 , U n

j0
)computational domain and the possible collision of two

phase boundaries. For definiteness, we shall restrict the
presentation of the method to the case that Riemann solu- and the Riemann solution at xj011/2 in cell j0 1 1 is
tions only involve 1–3 initial data. Assume that at the time
tn an approximation of the solution is known and the phase U*(U n

j011 , U n
j0

) 5 U 1(U n
j011 , U n

j0
)

boundary occupies a grid point. The speed of the phase
boundary at the time tn will be denoted by V n. As seen in

(see Section 2.2 for the notation). So
Section 2.2, it is determined from the kinetic relation by
solving a Riemann problem. As a consequence, the loca-
tion of the phase boundary is known. At the time tn11 , the U n11

j0
5 U n

j0
2

kn

hn
j0

( f̃ n(U 2(U n
j011 , U n

j0
))

mesh is shifted uniformly according to: xn11
j11/2 5 xn

j11/2 1
V nkn . An explicit formula for the scheme can be derived

2 f̃ n(U*(U n
j0

, U n
j021)), (3.5)in the following way.

Consider an element T (abcd) about the cell j in (x, t)
plane (Fig. 4). Integrate the conservation laws (2.5) over U n11

j011 5 U n
j011 2

kn

hn
j011

( f̃ n(U*(U n
j012 , U n

j011))
the element T :

2 f̃ n(U 1(U n
j011 , U n

j0
)). (3.6)E E

T
(Ut 1 f (U)x) dx dt 5 0.

We summarize the algorithm as follows:
From Green’s theorem, we have 1. Compute the speed of propagation of the phase

boundary from (2.22).
E

T
f (U) dt 2 U dx 5 0, (3.2) 2. Shift grid points according to: xn11

j11/2 5 xn
j11/2 1 V nkn.

3. Compute U n11
j from (3.4).

which classically leads to the following averaged form of 4. Repeat steps 1–3.
the conservation laws:

Compared with shock capturing schemes, this algorithm
has the following features:

U n11
j 5 U n

j 2
1
hn

j
FEtn11

tn
( f (U*(U n

j11 , U n
j )) • Moving grid

• Special Riemann solutions at a phase boundary.

2 V nU*(U n
j11 , U n

j )D dt (3.3) When V n 5 0, this algorithm reduces to the Godunov
method. When applied to conventional shock wave prob-
lems, the above algorithm is a standard Lagrangian-type2 Etn11

tn
( f (U*(U n

j , U n
j21)) 2 V nU*(U n

j , U n
j21)) dt.

method combining shock tracking and shock capturing.
Several Godunov-type methods can be used to implement
the above idea, The Godunov scheme, the MUSCLHere U*(UL , UR) is the constant value along cd or ab of

the Riemann solution with initial data (UL , UR). If we scheme, the PPM scheme, and the ENO scheme are some
of the examples. Not every variant in each class of schemesintroduce the notation:
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can be used in a straightforward manner, however. The
scheme needs to be ‘‘tested’’ on a cell containing a phase
boundary; a cell average across the phase boundary must
be avoided. If this is not possible, the scheme should not
be used for phase boundary problems. For instance, several
schemes are based on analytically solving a linear advection
equation and extrapolating the result to a general scheme
for nonlinear equations; this in general would not produce
the desirable property we require here—no spreading of
the phase boundary. We observe that one can use a scheme
in cells (I) which do not contain any phase boundary, and
another scheme in cells (II) where a phase boundary is
located. Such hybridization should be done carefully in FIG. 5. Local shifting of a grid point.
order to keep the same accuracy in both regions I and II.

Schemes that can be applied include: the Godunov
method (first-order method), a variant of the MUSCL

the locations of j0 , j0 1 1 are changed (Fig. 5). By doingscheme [52] (second-order method), and some even higher
this, the size of cells j0 and j0 1 1 will change as time goesorder schemes. In fact, any scheme whose numerical flux
on: one cell will shrink; the other will be enlarged. Whenis constructed through solutions based on solving Riemann
one cell is too small, we adjust the location of one gridproblems at cell interfaces can be used. In the numerical
point.experiments we present in Section 6, we shall implement

The modified algorithm then reads as follows:the Godunov method and a slope-limiter scheme.

1. Compute U n11
j from (3.4) with V n 5 0 for all of the

jth cell not containing the phase boundary.3.2. Propagation, Initiation, and Interaction
2. Compute the phase boundary propagation speed V n

In any computational cell, we distinguish three cases:
from the kinetic relation for the jth cell containing the
phase boundary.(i) propagation of a phase boundary,

3. Shift grid points locally by distinguishing two cases.(ii) nucleation of a phase boundary at a boundary
If V n , 0:point, or nucleation of two phase boundaries in the interior

of the domain, • If uxn
j011/2 2 xn

j011/2u . h/2, then shift the point j0 1 As

and compute the cell averages in the cells j0 and j0 1 1(iii) interaction of two phase boundaries.
from the formulas:

The interaction between a shock wave and a phase bound-
ary is taken care of automatically since shock waves are

U n11
j0

5
hn

j0

hn11
j0

U n
j0

2
kn

hn11
j0

( f̃ n(U 2(U n
j011 , U n

j0
))captured. In this subsection, we present some details of

the algorithm for computing the propagation of a phase
boundary. With some modification, the algorithm allows

2 f̃ n(U*(U n
j0

, U n
j021))

us to treat the nucleation and the interaction of phase
boundaries.

and

3.2.1. Propagation of a phase boundary
U n11

j011 5
hn

j0

hn11
j011

U n
j011 2

kn

hn11
j011

( f̃ n(U*(U n
j012 , U n

j011))One obvious shortcoming of the algorithm described in
Section 3.1 is that the grid points are shifted uniformly: it
cannot be applied to an initial value problem with multiple 2 f̃ n(U 1(U n

j011 , U n
j0

)).
phase boundaries or an initial-boundary value problem.
We are going now to shift grid points locally. As a conse-

• Otherwise adjust the location of the grid point j0 2
quence we will have a locally nonuniform mesh due to two

As in the following way:
cells moving with the phase boundary in a certain way.
Assume at time tn , xj011/2 represents a position of the phase — Move the point j0 2 As to the right side of the

phase boundary, and relabel it as j0 1 As, so that the cellboundary. At time tn11 , xj011/2 moves to a new position.
Instead of letting all grid points move with the phase [xj011/2 , xj013/2] keeps a ‘‘regular’’ size of O(h). Relabel the

phase boundary as j0 2 As.boundary, we move the point j0 1 As only. But subsequently
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served when local mesh regridding or local mesh refine-
ment is carried out;

(3) local time marching must end at a regular time step.

The collision of two phase boundaries can be treated as
in a method of Shyue [58] for the collision of two strong
shocks. After the collision of two phase boundaries, two
possible situations arise:

(a) no phase boundary comes out of the collision;
FIG. 6. Calculation of cell average for the adjusted cells. (b) two phase boundaries nucleate at the position of

collision.

Case (a) is a conventional shock wave issue, and case (b)
— j0 2 1, j0 , j0 1 1 are changed accordingly for the involves a nucleation problem. Both cases can be treated.

three adjusted cells. The nucleation criterion presented in Section 2.2 is used
for case (b).Then recompute the cell averages associated with the mod-

ified cells. The formulas are similar to those used in the
3.3. Consistency and Entropy Conditionlast step. See Fig. 6.

If V n . 0, the procedure is similar to that of the case It would be interesting to investigate the mathematical
V n , 0: properties of the method presented in Section 3. Questions

to be addressed would include consistency, stability, the• If uxn
j011/2 2 xn

j013/2u . h/2, then shift the point j0 1 As
entropy condition, and strong convergence. The numericaland compute the cell averages in the cells j0 and j0 1 1.
analysis of the method is complicated by the fact that

• Otherwise modify the location of the grid point
a locally nonuniform mesh is used. The main difficulty

j0 1 Ds and compute the cell averages for the adjusted cells.
concerning convergence is to prove that the kinetic relation

4. Repeat 1–3. and nucleation criterion are satisfied by the scheme in the
limit as the mesh sizes go to zero. This subsection is devotedIt should be noted that the restriction uck/hu , As is necessary
to some preliminary investigation of the properties ofin our algorithm. This is due to the fact that computational
our algorithm.cells can shrink as time evolves. Also a shrunken cell must

From (3.4), the numerical flux in the method isbe large enough, compared with h, in order to avoid local
time-marching.

F(U n
j11 , U n

j ) 5 f (U*(U n
j11 , U n

j )) 2 V nU*(U n
j11 , U n

j )

3.2.2. Initiation and Interaction
and, in general,

Although the above algorithm is presented for the case
of a single phase boundary, it can treat multiple phase F(U, U) 5 f (U) 2 VU ? f (U).
boundaries and the interaction of phase boundaries, as
well. When phase boundaries are separated by, at least, It might seem that the algorithm is not in conservative
one grid point (i.e., two cells), the algorithm in Section form, and so it might not be consistent with the conserva-
3.2.1 can be used without modification. When two phase tion laws (2.5). In fact, let us recall that the mesh is being
boundaries are too close to each other, i.e., typically when shifted as time goes on. Therefore let us rewrite the conser-
there is no grid point separating the two phase boundaries, vation laws (2.5) for coordinates moving at speed V. Let
then some modification is necessary. This is the subject of x0 be the coordinate for fixed coordinates. Let x0 be a point
this subsection. in the moving coordinates, then the coordinate of the point

Since a phase boundary has to be a grid point, when a in the fixed coordinates is x0 1 Vt. We write
new phase nucleates, the cells near the new phase bound-
aries will be very small at the initial stage. In the meantime,
the large difference in cell sizes may lead to computational

DU
Dt

; d
dt

U(x0 1 Vt, t) 5 V
­U
­x

1
­U
­t

,
instability. Therefore local time-marching and local mesh
regridding and refinement are necessary in general. Hence

so that from Eq. (2.5) we obtainwe emphasize that:

(1) a phase boundary has to be a grid point. DU
Dt

1
­

­x
( f (U) 2 VU) 5 0. (3.7)

(2) conservation of physical quantities must be pre-



202 ZHONG, HOU, AND LEFLOCH

Thus the algorithm is in fact a conservative method for In Glimm’s original algorithm, one should shift the mesh
by half a mesh size at every time step. Here we shallEq. (3.7), and, in view of (3.7), it is not hard to check that

it is consistent; assuming that the scheme converges in the follow a modified algorithm proposed by Colella [15] and
implement the Glimm scheme on a fixed mesh. We usestrong norm the limit must be a solution to the conservation

laws (2.5). the following numerical discretization. We denote by
xj11/2 the grid points. So [xj21/2 , xj11/2] represents a cell, andOne of the important properties of our scheme is that

it is conservative across the phase boundary. This is not xj is the center of the cell, hj 5 xj21/2 2 xj11/2 is the cell
width. The time step is denoted by k. We denote byobvious judging from (3.5) and (3.6). This property is a

consequence of the fact that the numerical fluxes on either Rn
j21/2 the Riemann solution at the point xj21 and the time

nk. Set also:side of the phase boundary, f̃ 6, cancel each other:

f̃ n(U 1(U n
j011 , U n

j0
)) 2 f̃ n(U 2(U n

j011 , U n
j0

)) 5 0.
Û n

j21/2 5 Rn
j21/2 SSan11 2

1
2D h

kD . (4.1)

The above equality holds because U 2 and U 1 are Riemann
solutions which satisfy the jump conditions (2.6) and
(2.7). Given the approximate solution hU n

j jj at time tn , Glimm
Observe that the algorithm is a Godunov-type scheme scheme is composed of the following main two steps:

and analytical solutions to the Riemann problems are used.
(i) Solve the Riemann problems at the cell interfacesThese analytical solutions satisfy the entropy criterion

xj21/2 with initial data (U n
j21 , U n

j ) ( j 5 ..., 21, 0, 1, ...). The(2.12). Therefore the algorithm is a consistent, conserva-
solution at the time t 5 tn11 is known for every x.tive, and entropically admissible method. The Lax–

Wendroff theorem then implies that the numerical solution (ii) hU n11
j jj is determined by sampling according to the

obtained by the algorithm converges to an entropy weak following formula:
solution to the conservation laws (2.5) as the mesh size
approaches zero. This analysis, however, does not apply
to the kinetic relation and the nucleation criterion. This
part of the analysis is left for future investigation. In Section U n11

j 5HÛ n
j21/2 , an11 . As,

Û n
j11/2 , an11 , As.

(4.2)
6, we demonstrate the convergence of the algorithm nu-
merically.

Here hanj is a given random sampling sequence in (0, 1).4. THE RANDOM CHOICE SCHEME
So, in Glimm’s scheme, one chooses a point value of a
local exact solution for hU n11

j jj , instead of a cell averageThe random choice scheme was introduced by Glimm
in Godunov’s method.in his pioneering paper [22] as part of a constructive

existence proof for systems of nonlinear hyperbolic con-
servation laws. In case solutions to Riemann problems

5. EXTENSION TO MORE GENERAL MATERIALSof a system of conservation laws are known explicitly,
the Glimm scheme can be implemented to compute the Our front tracking/capturing method in principle can be
discontinuous solutions to the system. A large literature applied to any material, although we so far only present
is available on the convergence of the Glimm scheme. the method for trilinear materials. Of course, it is of both
However, only recently the case of undercompressible theoretical and practical interest to apply the method to
shock waves such as the phase boundaries received a general two-phase materials; see Fig. 7. We assume that
lot of attention. The basic concepts on such waves can the stress–strain relation of these materials satisfies
be found, for instance, in the recent works by Isaacson,
Marchesin, and Plohr [33] and Liu and Zumbrun [44].
Stability of undercompressive waves, indeed, is an active s9(c) $ 0 for 21 , c # cm ,
area of research. As far as the convergence of the scheme
is concerned, the first result of convergence in the case
of phase boundaries was given recently by LeFloch in s9(c) , 0 for cm , c # cM ,
[41]. Therein the existence of solutions to the Abey-
aratne–Knowles model is established via the Glimm and
scheme. Glimm’s scheme is applicable and convergent
for computing propagating phase boundaries. s9(c) $ 0 for cM , c.
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we consider 3–1 initial data only, that is, data: Ul 5 (vl ,
cl), Ur 5 (vr , cr) with cl , cr in high strain phase (phase
3) and low strain phase (phase 1), respectively. The
algorithm for the approximate Riemann solver reads
as follows:

1. Set cl 5 (s9(cl)/r)1/2 and cr 5 (s9(cr)/r)1/2. Then
we approximate the general stress–strain relationship s(c)
by the trilinear stress–strain relation

ŝ(c)55
rc2

r (c2cr)1s(cr), 21,c,cm ,

ŝm 2sM

cm 2cM
(c2cM)1ŝM , cm ,c,cM ,

rc2
l (c2cl)1s(cl), cM ,y,

(5.1)FIG. 7. A nontrilinear two-phase elastic material.

We observe that explicit analytical Riemann solutions for
where ŝm 5 rc2

r (cm 2 cr) 1 s(cr) and ŝM 5 rc2
la general two-phase elastic material capable of phase tran-

(cM 2 cl) 1 s(cl). Solve the conservation laws for thesitions are not easily available. Solving Riemann problems
trilinear material for the U 1

2 , U 1
1 which are U rightis done numerically by an iterative method for nonlinear

behind and in front of the phase boundary. The phasealgebraic equations. In practice, this is time-consuming and
boundary propagation speed ṡ1 is determined by thethe convergence of the iteration method cannot be always
kinetic relation.guaranteed because we cannot always have a good initial

guess of the solutions. Motivated by Roe’s scheme in the 2. From the conservative requirement in hyperbolic
computation of shock waves, an approximate Riemann regions, we improve the linear coefficient matrix A in the
solver is proposed by Zhong [65]. We shall follow the basic following way:
idea of Roe [53]. The main idea is to determine Riemann
solutions by solving a constant coefficient linear system of

f (Ut) 2 f (U n
2) 5 Âl(Ul 2 U n

2),conservation laws instead of the original nonlinear system.
For the conservation laws (2.5), we consider the approxi- f (Ur) 2 f (U n

1) 5 Âr(Ur 2 U n
1).

mation:

From these conditions, we have

=f (U) 51 0 2
s9(c)

r

21 0
2P1 0 2c2

21 0 25 A.
cl 5 Ss(cl) 2 s(cn

2)
r(cl 2 cn

2) D1/2

(5.2)

andHere c is a constant to be determined. For definiteness,

FIG. 8. Solutions to Riemann problem with 1–3 initial data at t 5 0.5 by front tracking: (a) the strain distribution; (b) the velocity distribution.
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FIG. 9. Solutions to Riemann problem with 1–3 initial data at t 5 0.5 by Glimm’s scheme: (a) the strain distribution; (b) the velocity distribution.

It can be easily checked that the above algorithm satisfies
cr 5 Ss(cr) 2 s(cn

1)
r(cl 2 cn

1) D1/2

. (5.3) in the hyperbolic regions the three conditions on the linear-
ization as suggested by Roe in [53]. As the phase boundary
is not known a priori, the above ‘‘linearized version’’ ofThen we approximate the general stress–strain relation-
the conservation laws are still nonlinear. We apply theship s(c) by an improved trilinear stress–strain relation
approximate Riemann solver to two 3–1 initial data Rie-which has the same form as that in Step 1. We solve the
mann problems for the hypothetical nontrilinear stress–new approximate conservation laws for the new trilinear
strain relation constructed in [65]:stress–strain relation for U n11

2 and U n11
1 which are the val-

ues of U right behind and in front of the phase boundary.
for 21 , c , 20.9,The phase boundary propagation speed ṡn is determined 2

0.0071
1 1 c

1 14.64c 2 0.953
by the kinetic relation.

s(c) 5 c(c2 2 4.4c 1 5) for 20.9 # c , 4,3. If uṡn 2 ṡn21u , « (where « is given small enough),
then we get the following approximate solutions: ṡ 5 ṡn , 5 for 4 # c , y.950

1 1 c
1 55.8c 2 399.8U2 5 U n

2 , U1 5 U n
1 . The solution is illustrated in Fig. 1.

(5.4)4. If s9(cl) . s9(c2), we replace the left shock
by a rarefaction wave in 2(s9(cl)/r)1/2 , x/t ,
2(s9(c2)/r)1/2. If s(cr) . s9(c1), we replace the right We have here: cm 5 0.770646 and cM 5 2.1629. This stress–

strain relation corresponds to a material model proposedshock by a rarefaction wave in (s9(c1)/r)1/2 , x/t ,
(s9(cr)/r)1/2. by Lin [43].

FIG. 10. Trajectory of the phase boundary determined by (a) front-tracking method; (b) Glimm’s scheme.
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FIG. 11. Solutions to Riemann problem with 1–3 initial data at t 5 2 by front-tracking: (a) the strain distribution; (b) the velocity distribution.

Let us consider two examples: Approximate Exact
Methods Riemann solver Riemann solver

Test 1: 1-shock, 1-subsonic phase boundary, 1-shock
( r 5 1) obtained from the initial condition: (vl , gl , vr , gr) ṡ 0.49437 0.51091
5 (0, 2.5, 20.5, 0.5) and g 5 0.5. v1 20.10773 0.06913

c1 0.20767 0.18677
Approximate Exact v2 21.39407 21.40610

Methods Riemann solver Riemann solver c2 2.80966 2.80359

ṡ 20.14070 20.15547 By an ‘‘exact’’ Riemann solver, we mean a procedure to
v1 20.10279 20.11767 obtain the Riemann solutions directly from the original
c1 0.23198 0.24046 set of nonlinear equations and their jump conditions using
v2 0.23859 0.26024 Newton iterations. For further discussion on the structure
c2 2.65840 2.67122 of the solution to Riemann problem for general two-phase

elastic materials, one refers to [43, 65]. From the two tests,
Test 2: 1-shock, 1 subsonic phase boundary, 1-rarefaction we see that the approximate Riemann solver works reason-

wave ( r 5 1) obtained from the initial condition: (vl , gl , ably well. On the other hand, we note that the discrepancy
vr , gr) 5 (21.6, 2.7, 0.1, 0.1) and g 5 0.5. between the numerical solution based on the approximate

Riemann solver and that of the exact one will not go to
zero as we refine the mesh (see Test 7). Therefore if we
use such an approximate Riemann solver in our numerical
scheme, it would not give a convergent method. In order
to obtain a convergent scheme based on the approximate
Riemann solver, we propose to use the above Riemann
solver, together with a nonlinear Newton iterative method.
We will use the above Riemann solver to produce an accu-
rate initial guess and use it in our nonlinear Newton itera-
tion scheme. This proves to be very effective. The Newton
iterations typically converge to the correct Riemann solu-
tion with only a few iterations (2 or 3).

The above approximate Riemann solver can be applied
to our front tracking/capturing method. Following the gen-
eral procedure in Section 3.1, we obtain the following ap-
proximate flux at a phase boundary that is propagating
with the speed V,

FIG. 12. Trajectory of the phase boundary determined by front-
tracking method. f̃ (Ul , Ur) 5 AÛ* 2 VÛ* 1 f (Ur) 2 AUr , (5.5)
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FIG. 13. Solutions to the problem involving nucleation of a phase boundary by front tracking at t 5 0.2: (a) the strain distribution; (b) the
particle velocity distribution.

where Û* is the approximate Riemann solution at the when a phase boundary is present in a cell. In Tests 1–6,
phase boundary. Fluxes away from a phase boundary can the material is the trilinear material defined in Section 2.
be computed by the classical Roe’s approximate Riemann The kinetic relation is given by f 5 gṡ. The material con-
solver, and the corresponding approximate flux is obtained. stants are: e 5 1, r 5 1, g 5 0.35, cm 5 0.5, cM 5 1.0,
We emphasize that the conservation of U is guaranteed cT 5 0.75, ccr 5 0.5, c*cr 5 1.0. In the computations, the
by Roe’s approach. On the other hand, the propagation time step is 0.001 (time unit), the mesh size h is 0.01 (length
of a phase boundary is determined by simply using the unit), if not otherwise specified. In applicable diagrams,
above flux into the algorithm in Section 3.2. Using an the analytical solutions are represented by solid lines, nu-
approximate Riemann solver, we can compute propagation merical solutions are represented by dashed lines or dots.
of phase boundaries associated with general two-phase An equidistributed sequence an 5 nÏ2 2 [nÏ2] is used
elastic materials. in the computation of Glimm scheme. Here [nÏ2] repre-

sents the integer part of nÏ2.
6. NUMERICAL EXPERIMENTS More specifically, we compute the propagation of a

single phase boundary in Test 1. We also check the
We implement the front tracking/capturing method by convergence of our method in this test numerically. In

Godunov scheme and a slope-limiter scheme, which is the convergence test, we find that the Godunov scheme
equivalent to a variant of the MUSCL scheme [52]. It implemented in our method is of order O(h0.5) in the
should be pointed out that the slope-limiter in the MUSCL

discrete L1 norm, rather than O(h). This is because in
scheme, based on the so-called minmod limiter in our code,

the trilinear materials the shock waves degenerate tois determined unilaterally instead of bilaterally by minmod
contact discontinuities. The spreading of the discontinuity
is of order (O(Ïh). For real shocks, we expect that the
Godunov scheme is of order O(h); see more discussions
on this in Test 7. Numerical results of an initial value
problem with complex initial data are presented in Test
2. The results show that our scheme can deliver accurate
results for complicated cases. Nucleation of new phase
and collision of two phase boundaries are computed in
Tests 3–5. The improvement of accuracy of the computed
phase boundary position is obtained with local mesh
refinement. In Test 6, a much more complicated problem
is considered, which involves the interaction of the phase
boundary with shock waves. The numerical solution gen-
erated by our front tracking/capturing method is in
very good agreement with the analytical solution. The

FIG. 14. Trajectory of the phase boundary. propagation of a phase boundary in a finite bar is



PROPAGATING PHASE BOUNDARIES 207

FIG. 15. Solutions to the problem involving nucleation of two phase boundaries by front tracking at t 5 0.2: (a) the strain distribution; (b) the
particle velocity distribution.

computed in Test 7. A preliminary result on general discontinuities are captured in our tracking/capturing
method, they are smeared out by numerical viscosity.two-phase elastic materials is presented in Test 8, with

more discussions on convergence. Glimm’s scheme computes sharp contact discontinuities.
On the other hand, the front tracking/capturing method

6.1. Test 1: Single Phase Boundary tracks the location of the phase boundary accurately while
the trajectory of the phase boundary computed by Glimm’sA 1–3 initial data Riemann problem is treated here. The
scheme randomly oscillates around the exact trajectory.initial data are vL 5 0.7, cL 5 0.3, vR 5 0.1, cR 5 1.2.

We compute the propagation of a phase boundary by our 6.2. Test 2: Single Phase Boundary with Piecewise
tracking/capturing method and Glimm’s scheme. The nu- Smooth Initial Data
merical results are compared with the exact solution that

An initial value problem that associates with a singleis known from Section 2.2. See Figs. 8–10. The results from
phase boundary is considered here. The initial data are,the front tracking/capturing method are obtained using a

slope-limiter scheme. The convergence of the front
tracking/capturing method is demonstrated in the follow-
ing table, where the error e is measured by l1-norm for
particle velocity or strain, v(x, 0), c(x, 0) 55

0,0, x , 21,

0, 0.1(x 1 1)2, 21 , x , 0,

0, 1.2 1 0.1Ïx, 0 , x , 1,

0, 1.3, 1 , x.e
e (slope-limiter

Mesh size (Godunov scheme) scheme)
It is obvious that the x , 0 part is in phase 1 while the

2h 1.62 3 1022 7.73 3 1023 x . 0 part is in phase 3. The initial data are continuous
h 1.15 3 1022 4.91 3 1023 except at x 5 0.

h/2 8.15 3 1023 3.15 3 1023 The exact solution for the initial value problem is not
easy to obtain. However, we can use the method of charac-
teristics to obtain a solution by an iterative procedure. Thewhere h 5 0.01, CFL 5 0.1 (fixed), t 5 0.5. In this particular

test, the errors for particle velocity and strain are about the solution procedure is presented in the Appendix. We call
solutions obtained from this procedure ‘‘the exact solu-same, so in the above table, we list only one error for each

scheme. tion’’ in this test. The numerical solutions are presented in
Figs. 11 and 12. Figure 12 indicates that the phase boundaryThe results show that the front tracking/capturing

method converges to the exact solution when the mesh size propagation speed is very accurate. In this test, we fixed
CFL, with CFL 5 0.1, and take h 5 0.01. Denote by Sreduces to zero, but the Godunov scheme converges at the

order O(h0.5), the slope-limiter scheme converges approxi- the distance that the phase boundary has moved from its
original position at time t 5 2. The accuracy of the phasemately at the order O(h0.65). These convergence rates can be

partly explained by the fact that the ‘‘shocks’’ in the trilinear boundary position under different mesh size is listed in
the following table:materials are in fact contact discontinuities. As the contact
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ary at the boundary of the bar, the magnitude of vb has to
be large enough, uvbu . cccr . In this calculation, we take
vb 5 20.6 so that we can have a nucleation at the boundary.
In a real computation, at the first several time steps, the
nucleated phase boundary is very close the boundary of
the bar, so local time marching is necessary. After the first
time step we relocate the first grid point to the phase
boundary. We do local time marching in the two cells that
contain the phase boundary until it is 1As cell away from
the boundary of the bar. We continue the computation by
the algorithm in Section 3.2.1. It should be noted that time
step in the local time marching is adjusted according to
the size of the first cell. The smallest time step in the local

FIG. 16. Trajectories of phase boundaries. time marching is about aQs of the normal time step, and
the local time marching lasts 10 normal time steps. Our
numerical results are in good agreement with the exact
solution; see Figs. 13 and 14. Again, the front tracking/Mesh size u(Sexact 2 SNumerical)/Sexactu
capturing method tracks the phase boundary accurately,
while the contact discontinuity is smeared numerically, the2h 0.47%
error of phase boundary position is 1.15%.h 0.24%

h/2 0.11%
6.4. Test 4: Nucleation of Two Phase Boundaries

We clearly observe a first-order convergence in the phase Due to the interaction of shock waves, a new phase may
boundary position as we refine the mesh. It should be be initiated in the interior of the domain so that two phase
noted that the trajectory of the phase boundary in this boundaries will be generated from a single grid point. For
case is not a straight line, but a curve with a small curvature. the regridding of cells around the new phase, we can pro-

ceed as in Test 2; then we proceed by local time marching6.3. Test 3: Nucleation of a Phase Boundary at an
until the distance between the two new phase boundariesEnd Point
is no less than twice the regular cell size. However, this

Nucleation of a phase boundary at the boundary of a mesh technique does not work sometimes because the big
bar is quite common, such as the case in bar impact experi- difference of mesh sizes may produce errors that lead to
ments. In this test we only consider a very simple situation; numerical instability. This suggests that local mesh re-
a semi-infinite bar, which is in an initially undeformed finement is necessary.
state, is impacted at the end x 5 0 at time t 5 0. The We consider the nucleation of two phase boundaries
boundary condition here can be described by v(0, t) 5 vb , in a 1–1 initial data Riemann problem. The initial data
where vb is a constant. The initial state of the bar is is taken to be: vL 5 20.1, cL 5 0.2, vR 5 0.5, cR 5
v(x, 0) 5 0, c(x, 0) 5 0. In order to initiate a phase bound- 0.4. In the computation the mesh size in the refined

region is aQ; of regular size, the smallest time step in
local time marching is aQ; of regular time step. The
numerical results are compared with analytical results in
Figs. 15 and 16.

6.5. Test 5: Collision of Two Phase Boundaries

We construct special initial data which give rise to two
phase boundaries colliding at a finite time. The initial data
are piecewise constant in three regions that we refer to as
L, C, and R. We choose: vL 5 0.789, cL 5 20.4, vC 5 0.,
cC 5 1.125, vR 5 0., cR 5 0.375.

When two phase boundaries are so close to each other
that there are no grid points in between, we treat the three
cells which contain the phase boundaries as a group with
no further regridding in these cells. After the interaction,FIG. 17. Trajectories of phase boundaries for the problem involving

collision of phase boundaries. the whole domain under consideration is in phase 1. Com-
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FIG. 18. The strain distribution: (a) initial strain; (b) strain after collision, t 5 0.8.

parison between the numerical results and analytical re- tion, the position of the phase boundary as calculated nu-
merically is accurate. For fixed CFL, we check the conver-sults are given in Figs. 17–19.
gence by changing the mesh size and the time step with h 5

6.6. Test 5: Impact on a Semi-infinite Bar with an 0.01, CFL5 0.1and S is thedistance that the phaseboundary
Initially Stationary Phase Boundary has moved from its original position at time t 5 3:

In this example, we consider the effect of impact on a
Mesh size u(Sexact 2 SNumerical)/Sexactusemi-infinite bar initially in a two-phase equilibrium state,

with a single stationary phase boundary. There is an analyt-
2h 2.45%ical solution to this problem derived by Zhong [65]. We
h 1.58%compare the computed phase boundary position to that of

h/2 0.84%the exact solution.
A semi-infinite bar is located at [0, y) in the reference

state, and a phase boundary is initially located at x 5 1.995, These results suggest that the numerical solution con-
verges to the exact solution as the mesh size goes to zero.in the equilibrium state. The strains in the bar are c 5 0.375,

v 5 0 for x in [0, 1.995) and c 5 1.125, v 5 0 for x in (1.995, Roughly speaking the accuracy of the method is of order
O(h2 1 k) when a slope-limiter scheme is implemented.y). At time t 5 0, the bar is loaded by a velocity whose time-

history is a given square wave. The duration of the square The improvement of the accuracy in space can be easily
implemented, but improvement of the accuracy in timewave is 0.5 (time unit), the amplitude of the square wave is

0.15 (length unit/time unit). The numerical results are integration requires some changes in the formulation of
the algorithm (3.4) due to the nonuniformity of the mesh.shown in Figs. 20–22. When compared with the exact solu-

FIG. 19. The particle velocity distribution: (a) initial state; (b) velocity after collision, t 5 0.8.
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FIG. 20. The strain distribution in a semiinfinite bar at different time.

As before, the contact discontinuities are smeared out sharp phase boundary, as well as sharp contact discontinu-
ities; see Figs. 23 and 24.slightly. This contributes to the error in the speed of propa-

gation of the phase boundary and, thus, in the position of
the phase boundary. In the computation, the boundary

6.7. Test 7: Propagation of a Phase Boundary
values are carefully chosen so that there is no other phase

in a Finite Bar
boundary nucleated at any time in the bar. Glimm’s scheme
is also applied to the problem. However, Glimm’s scheme There is no analytical solutions for this case. The finite bar

is located at [0, 3] in the reference state. A phase boundary inproduces a relatively large error due to the statistical errors
in the random sequence. Again Glimm’s scheme gives a the bar is initially located at x5 1.005, with [0, 1.005) in phase

FIG. 21. The particle velocity velocity distribution in semiinfinite bar at different time.
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for details about this. It should be noted that when the
loading is small enough there is no new phase boundary
initiated in the whole process.

6.8. Test 8: An Example for General Two-Phase
Elastic Materials

We use our front tracking method and the proposed
approximate Riemann solver to compute the problem in-
volved in Test 1 and Test 2 of Section 5. A first-order
Godunov scheme is used in the implementation. The re-
sults for the two tests show that our front tracking method
works well when an approximate Riemann solver is used.
Here we only present the results for Test 1 of Section 5;

FIG. 22. Trajectory of the phase boundary determined by front tracking. see Figs. 28, 29. The error in the computed phase boundary
position is 3.81% for h 5 0.01. For fixed mesh size, the
error decreases slowly with the decrease of the time step,

1, c 5 0.375, v 5 0, (1.005, 3] in phase 3, c 5 1.125, v 5 0. 3.80% for time step 0.001/2; 3.79% for time step 0.001/4.
An impact is loaded at x 5 0 at time t 5 0. The load is the For fixed CFL, the decrease in mesh size does not improve
same as that in Test 5. The duration of the square wave is 0.5 the accuracy of computation. This ‘‘locking’’ of accuracy
(time unit), the amplitude of the square wave is 0.15 (length is due to the inherent error of the approximate Riemann
unit/time unit). The results are shown in Figs. 25–27. solver. To remedy the deficiency, we propose the following

In Fig. 27, as we can see, before the reflected shock wave procedure: use the Riemann solutions from the approxi-
from x 5 3 hits the phase boundary, the phase boundary mate Riemann solver as initial guesses for the iterative
behaves as if it were in a semi-infinite bar. After the re- exact Riemann solver; use the Riemann solutions of the
flected waves from end point x 5 3 hit the phase boundary, iterative exact Riemann solver to construct the numerical
the boundary behaves quite irregularly. As time increase, flux. It only takes one or two iterations for the iterative
there are more and more waves with smaller and smaller exact Riemann solver to converge when using the approxi-
amplitudes in the bar. The decrease of the amplitudes is mate Riemann solution as the initial guess. Using this pro-
due to the dissipation of energy at the phase boundary. cedure, we obtain the following convergent results:

Although the phase boundary will eventually reach an
equilibrium state, but it takes a very long time to reach Mesh size u(Sexact 2 SNumerical)/Sexactu
the equilibrium. And it is of theoretical interest to see
whether the dynamic solution approaches corresponding 2h 0.753%

h 0.479%static solution in large time. It has been shown numerically,
for a sufficiently small loading, that the dynamic solution h/2 0.283%

h/4 0.154%indeed approaches a corresponding static solution; see [65]

FIG. 23. Trajectory of the phase boundary determined by (a) Glimm’s scheme; (b) analytical solution.
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FIG. 24. Solutions to the semiinfinite bar problem by Glimm’s scheme at t 5 8: (a) the strain distribution; (b) the particle velocity distribution.

Mesh size e1 (velocity) e2 (strain) mesh size gives a higher convergent rate. The order in-
creased roughly from O(h0.65) (2h R h) to O(h0.85)

2h 2.72 3 1022 1.816 3 1022 (h/2 R h/4). This observation is consistent with the error
h 1.712 3 1022 1.157 3 1023 analysis for the Godunov scheme; for a contact discontinu-

h/2 1.014 3 1022 6.724 3 1023 ity, the Godunov scheme is of order O(h0.5); for a shock
h/4 5.652 3 1023 3.748 3 1023 wave, the accuracy order of Godunov scheme should ap-

proach O(h) as mesh size goes to zero.
where h 5 0.01, CFL 5 0.1 (fixed), and x 5 S is the position
of the phase boundary at time t 5 0.2. Here e1 and e2 are 7. CONCLUDING REMARKS
errors of the particle velocity and strain measured by the
l1-norm. If we compared these results with those obtained Our tests demonstrate that the tracking/capturing

method can treat initial-boundary value problems in thefrom the Godunov scheme in Test 1, we can see that the
results obtained here converge at a higher order. A smaller modeling of solid–solid phase transformations. The

FIG. 25. The strain distribution in a finite bar at different time.
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FIG. 26. The particle velocity velocity distribution in a finite bar at different time.

method is shown to be consistent, entropically admissible, phase boundary to be a grid point. This requirement may
limit its feasibility in multidimensional applications. Weand convergent. In our method, a phase boundary is
are currently working to improve our method so that thetracked explicitly and a shock wave or contact discontinuity
phase boundaries need not be explicitly tracked. A possibleis captured. For trilinear materials, shock waves are degen-
approach is to use the subcell resolution technique devel-erated to contact discontinuities, and thus they are smeared
oped for shock capturing (see, e.g., [29, 46, 47]). In particu-out slightly. For nonlinear two-phase materials (Test 7), a
lar, the work of Mao [46, 47] can be used naturally inreal shock is captured accurately. In this case, even a first-
our context. In [46, 47], the critical cell that contains aorder method can give a relatively sharp shock front. Our
discontinuity is tracked, but not the discontinuity itself.preliminary tests show that the proposed methods are capa-
This ‘‘tracking’’ technique is much more robust than theble of approximating the initial-boundary value problems
conventional tracking methods, and it can be applied toof the Abeyaratne–Knowles model.
two-dimensional cases in a dimension-by-dimension wayIn our numerical methods, a locally nonuniform and
[48]. With some modifications, this ‘‘tracking’’ techniquetime-dependent mesh is used in the tracking/capturing
can be applied to the computation of propagating phasemethod. The mesh technique is straightforward and easy
boundaries when the kinetic relation is appropriately incor-to implement. On the other hand, our method requires the
porated into the numerical scheme. More work is necessary
for the application of this ‘‘tracking’’ technique to the phase
boundary problems in complicated situations, such the nu-
cleation of new phases. This investigation is in progress.

We also propose an approximate Riemann solver to
compute the propagating phase boundaries for general
two-phase elastic materials. The Roe’s type of approximate
Riemann solver gives a reasonably good approximation to
the exact Riemann solution. But it does not seem to con-
verge under mesh refinement. We find it most effective to
use the Roe-type of approximate Riemann solver along
with the iterative exact Riemann solver based on the New-
ton iteration. We use the approximate Riemann solution
as our initial guess for the iterative Riemann solver. This
gives a fast convergent method to compute the exact Rie-

FIG. 27. Trajectory of the phase boundary in a finite bar. mann solution.
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FIG. 28. Solutions to a Riemann problem with 3–1 initial data: (a) the strain distribution; (b) the particle velocity distribution.

Glimm’s scheme produces relatively large errors for Here vL(x), vR(x), cL(x), and cR(x) are continuous func-
tions. We require that cL(x) [ (21, cm) and cR(x) [ (cM ,complicated initial-boundary value problems (Test 5), but

it can deliver fairly good results for the propagation of a y); i.e., cL(x) is in the low strain phase (phase 1) and cR(x)
is in the high strain phase (phase 3). For simplicity, wesingle phase boundary. Also, Glimm’s scheme is easy to

implement. It produces sharp phase boundaries, sharp con- further require that the variations of vL(x), vR(x), cL(x),
and cR(x) should be small and their values should be smalltact discontinuities, and shock fronts. Another advantage

of Glimm’s scheme is that we can use a fixed mesh, instead enough in their ranges so that there is no new phase bound-
ary nucleated at any time.of a moving mesh. One way to take advantage of Glimm’s

scheme is to combine Glimm’s scheme with other high There is no self-similar solution to this initial value prob-
lem. However, we can solve the problem by the characteris-order methods, and to use Glimm’s scheme at a phase

boundary, but high order methods away from the phase tics method. For trilinear materials, the characteristic lines
of the partial differential equations under considerationboundaries. This work is in progress.
are straight lines in both hyperbolic regions (high strain

APPENDIX A: INITIAL VALUE PROBLEM FOR THE regions and low strain regions): x 6 ct 5 const.
PROPAGATION OF A SINGLE PHASE BOUNDARY Assume that the trajectory of the phase boundary ini-

tially x 5 0 is x 5 s(t) with s(0) 5 0. It can be shown
Now we consider an initial value problem for the propa- by jump conditions and entropy conditions at the phase

gation of a single phase boundary for trilinear materials. boundary that 2ct , s(t) , ct. We can determine v2(x, t),
The initial data are of the following form: c2(x, t) for x 1 ct , 0 and v1(x, t), c1(x, t) for x 1 ct . 0

by Riemann invariants; however, we cannot determine v(x,
t) and c(x, t) in the fan area 2ct , x , ct, because the

v(x, 0), c(x, 0) 5HvL(x), cL(x), x , 0,

vR(x), cR(x), 0 , x.
(A1.1) characteristics lines cannot carry information through the

phase boundary.
For 2ct , x , s(t),

v2(x, t) 2 cc2(x, t) 5 vL(x0) 2 ccL(x0), (A1.2)

where x 2 ct 5 x0 .
For s(t) , x , ct,

v1(x, t) 1 cc1(x, t) 5 vR(x0) 1 ccR(x0), (A1.3)

where x 1 ct 5 x0 .
To determine v6(s(t) 6, t) and c6(s(t) 6, t), we have

the following equations from Riemann invariants, jump
conditions, and kinetic relations at the phase boundary

FIG. 29. Trajectory of the phase boundary. x 5 s(t):
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v2(s(t), t) 2 cc2(s(t), t) 5 vL(x0) 2 ccL(x0); almost identical to those obtained by the characteristics
method presented here.

x0 5 s(t) 2 ct, (A1.4)

v1(s(t), t) 1 cc1(s(t), t) 5 vR( y0) 1 ccR( y0); ACKNOWLEDGMENTS
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c2 2 ṡ2(t)
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Structures in General Media, edited by R. Fosdick, E. Dunn, and H.
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